Restarting the Nonsymmetric Lanczos Algorithm for Eigenvalues and Linear Equations Including Multiple Right-Hand Sides
نویسندگان
چکیده
A restarted nonsymmetric Lanczos algorithm is given for computing eigenvalues and both right and left eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Restarting also makes it possible to deal with roundoff error in new ways. We give a scheme for avoiding near-breakdown and discuss maintaining biorthogonality. A system of linear equations can be solved simultaneously with the eigenvalue computations. Deflation from the presence of the eigenvectors allows the linear equations to generally have good convergence in spite of the restarting. The right and left eigenvectors generated while solving the linear equations can be used to help solve systems with multiple right-hand sides.
منابع مشابه
Restarting the Nonsymmetric Lanczos Algorithm
A restarted nonsymmetric Lanczos algorithm is given for computing eigenvalus and both right and left eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Restarting also makes it possible to deal with roundoff error in new ways. We give a scheme for avoiding near-breakdown and discuss maintaining biorthogonality. A system of linear equations can be solved s...
متن کاملDeflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides
A deflated restarted Lanczos algorithm is given for both solving symmetric linear equations and computing eigenvalues and eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Meanwhile, the deflating from the presence of the eigenvectors allows the linear equations to generally have good convergence in spite of the restarting. Some reorthogonalization is ne...
متن کاملExtending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides
The technique that was used to build the eigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window...
متن کاملRestarted Block Gmres with Deflation of Eigenvalues
Block-GMRES is an iterative method for solving nonsymmetric systems of linear equations with multiple right-hand sides. Restarting may be needed, due to orthogonalization expense or limited storage. We discuss how restarting affects convergence and the role small eigenvalues play. Then a version of restarted block-GMRES that deflates eigenvalues is presented. It is demonstrated that deflation c...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011